Installation & Operation Manual

Model: HU-3K/6L HU-9K/6L

1 Unit Information1
1.1 Appearances
1.2 Model Specification
1.3 Unit Dimension
1.4 Exploded View
1.5 Accessories
1.6 Range Of Application4
2 Running Principle
2.1 Running Principle Diagram
2.2 Running Principle Description
3 Installation
3.1 Precautions Before Installation
3.2 Disclaimer
3.3 Warning
3.4 Installation Location7
3.5 Chassis Assembly Installation and fixation
3.6 Water Pipe Installation
3.7 Water Pipe Insulation And Freeze Protection12
3.8 Pressure Regulation Anticorrosive And Wash
4 Electrical Connection14
4.1 Wire Diagram14
4.2 Motherboard Port Definition
4.3 Electrical Wiring Connection
5 Wire Controller & Parameters Settings21
5.1 Interface
5.2 Mode Setting
5.3 Other Setting
6 Initial operation and settings
6.1 Attention
6.2 Preparation Before Adjustment
6.3 Adjustment Process
7 Operation and Maintenance48
7.1 Operation
7.2 Maintenance

Content

1 Unit Information

1.1 Appearances

1.2 Model Specification

NO.	Model	Unit	HU-3K/6L	HU-9K/6L
1	Damage Size (L×W×H)	mm	420/261/669	420/261/669
2	Package Connection $(L \times W \times H)$	mm	480/341/770	480/341/770
3	Unpacked Weight	kg	34	34
4	Packed Weight	kg	37	37
5	Unit Cycle In/Outlet	inch	G1 Male	G1 Male
6	Life Hot Water Enters/Outlet	inch	G1 Male	G1 Male
7	Cushion Water Tank In/Outlet	inch	G1 Female	G1 Female
8	Rated Water Flow	m³/h	2.5	2.5
9	Pressure Drop At Rating Water Flow	kPa	10	10
10	Water Side Work	MPa	0.1/0.3	0.1/0.3
	Minimum/Maximum Water Pressure			
11	IP Class	/	IPX0	IPX0
12	Operating Temperature	°C	-25~45	-25~45
	Range(Heating Mode)			
13	Sound Pressure At 1m Distance	dB(A)	35	35
14	Power Supply	V/Ph/Hz	220~240/1/50	380~415/3/50
15	Element Heating	kW	3	3/6/9
16	Life Hot Water Growth Pump	individual	Yes	Yes
17	Expansion Tank	L	6	6
18	Life Hot Water Three -Way Valves	individual	Yes	Yes

261

1.3 Unit Dimension

1.4 Exploded View

NO.	Name	NO.	Name
1	Front Panel	9	Fixed Hanging Panel
2	Electric Assembly	10	Rear Panel
3	Chassis	11	Electric 3-Way Valve
4	Water Pump	12	Top Cover
5	Pipe Assembly	13	Security Assembly
6	Expansion Tank	14	Electric Heating
7	Right-Side Panel	15	Left Panel
8	Front Panel		

3

1.5 Accessories

NO.	Name	Quantity
1	Installation & Operation Manual	1
2	Wire-controller	1
3	Screw	3

1.6 Range of application

Model: HU-3K/6L

Power supply: 220V-240V/1N~50Hz;
 Ambient temperature: -25°C~45°C;
 Rated Water Flow: 2.5m³/h_o

Model: HU-9K/6L

Power supply: 380-415V/3N~50Hz;
 Ambient temperature: -25°C~45°C;
 Rated Water Flow: 2.5m³/h.

2 Running Principle

2.1 Running Principle Diagram

2.2 Running Principle Description

The hydro box integrates water pumps, valves, safety components, electric heater and other components. Compared with the traditional complex and cumbersome piping system layout, its installation area is small; it saves installation time and costs; it can reduce human factors and environmental factor damage, and maintenance is simple.

The cold/hot water provided by the heat pump is pressurized and supplied to the buffer water tank and the domestic hot water tank through a water pump inside the hydraulic box. When the water in the buffer water tank and the domestic hot water tank reaches a certain temperature, the temperature control probe feedback signal is used. The return water pipes on each water tank return to the heat pump through the hydraulic box for heat treatment, forming a cycle in the system.

3 Installation

3.1 Precautions Before Installation

1. Make sure the wall is strong enough, avoid installation in unstable places.

2. Make sure there is enough space for installation and maintenance, avoid installation near flammable items.

3. Avoid installation in locations with serious power supply voltage fluctuation.

4. Install in a dry well-ventilated place ,avoid installation in locations with harsh environmental conditions.

5. Check the model, number, name etc, to avoid incorrect installation.

6. The power supply and diameter of the cables used must be in accordance with the electrical installation requirements.

7. Electrical installation must comply with the relevant technical standards of electrical equipment, and electrical insulation work must be done.

8. The heat pump cooling and heating water system should be a closed system, if using antifreeze or other refrigerant, please consult the manufacturer.

3.2 Disclaimer

1. This product must use the copper-core power supply line that meets the required wire diameter to supply power independently, and the unit needs to have a reliable grounding wire; if the wiring does not meet the requirements, causing the unit not to work properly, the manufacturer will not be held responsible for this.

2. When cleaning the unit, you must stop the machine and cut off the power switch; if the unit is running with electricity for cleaning, causing electric shock and personal safety injuries, the manufacturer will not be responsible for this.

3. In winter or when the ambient temperature is below 2°C, if the machine is shutdown for a long time and not in use, make sure to empty the water in the water circuit and water tank to prevent the water from freezing and expanding, which will crack the water circuit and water tank and damage the machine. If the unit is damaged by freezing due to power failure and stopping the antifreeze protection of the unit, the manufacturer will not be responsible for this.

3.3 Warning

1. Before installation, it should be confirmed that the voltage of the power grid is the same as the required voltage of the unit, and whether the through-load capacity of the wires and sockets meets the maximum power requirements.

2. If the standing appliance is not equipped with power cord and plug, and there is no other device to disconnect the power supply (its contact opening distance provides a full disconnection under overvoltage class III), the fixed wiring connected to it must be equipped

with an all-pole disconnecting earth leakage protection device with a contact opening distance of more than 3mm in accordance with the rules of wiring.

3. Please commission the dealer or professional installation; the installer must have the relevant professional knowledge, self-installation, if the wrong operation will lead to water leakage, fire, electric shock, injuries and so on.

4. Make sure to use our designated products for locally purchased auxiliary items.

5. When connecting the power supply, please comply with the regulations of the local electric company; confirm whether it is correctly grounded or not, if the grounding is not perfect, it may cause electric shock to the personnel.

6. Do not remove any permanent instructions, labels or nameplates on the inside of the heat pump unit casing or various panels.

7. The power supply wiring must be equipped with a leakage protector whose rated current value is not lower than the high operating current of the unit, and the grounding must be reliable and kept dry to prevent leakage. Please always check the wiring is good with, if the contact is poor, it will lead to overheating and burn the device, and even cause fire and other personal injury accidents.

8. In the place where water may splash to and on the wall, the installation height of the power socket should not be lower than 1.8 meters, and make sure that the water will not splash to the socket and should not be installed in the place where children may reach.

9. If the parts of the unit are damaged, please leave them to professional maintenance and use the special maintenance parts provided by the company.

10. When an abnormality occurs (burning odor), you should immediately cut off the manual power switch, stop running, and contact the manufacturer's after-sales service department.

3.4 Installation Location

Unit: mm

3.5 Chassis Assembly Installation and fixation

Unit: mm

1. Make sure the wall is strong enough, as indicated by the arrow use Φ 10 expansion bolts firmly fix the fixed hanging plate to the wall.

2. Insert the rear panel of the hydro box into the fixed hanging panel, and adjust the hydro box to be perpendicular to the ground.

3.6 Installation of the pipeline

1. According to running principle diagram (See Figure 1) and exploded view (See Figure 2), connect the pipelines of each system step by step.

Figure 2

2. When connecting the water inlet and outlet pipes, use two pipe wrenches to adjust the two parts of the pipes, and make sure the water inlet and outlet pipes do not twist (see Figure 3).

Figure 3

3. Heat pump, hydro box, buffer tank and hot water tank should be installed as close as possible. If they are far apart, the pressure drop of the pipeline will increase, it need to calculate whether the head of the water pump meets the normal operation of the system.

4. The connection of pipelines and components should comply with the following regulations:

1)The bending radius of plastic pipes should not be less than 8 times the outer diameter of the pipeline, and the bending radius of composite pipes should not be less than 5 times the outer diameter of the pipeline.

2) The slope of pipeline laying should be 3 ‰, and should not be less than 2 ‰. Equipment or exhaust valves with exhaust function should be installed at the highest point.

5. Pipelines connection between equipment, and valves should comply with the following regulations:

1) The connectors should use specialized connectors that are suitable for the pipes used.

2) When using plastic pipe hot melt connection, the working environment temperature of the hot melt connection should meet the technical requirements of the pipe material.

3) The outer surface of the hot melt connection socket and the inner surface of the socket should be scraped with a small diameter of 0.2mm. The oxygen blocking layer of the oxygen blocking pipeline must be scraped during the hot melt connection.

4) The allowable error in concentricity after hot melt connection should be 2%, and the misalignment at the interface should be less than 10% of the pipe wall thickness.

5) The hot melt device should use a digital temperature dial, and its hot melt temperature should be executed according to the regulations of the pipeline manufacturer.

6) Isolation measures should be taken between plastic pipes and composite pipes and metal supports and hangers, and direct contact should not be allowed. Non metal pads or sleeves should be added between the pipes and supports, and the spacing between supports and hangers should meet the design requirements. When there are no design requirements, the maximum spacing between plastic pipes and composite pipe supports should comply with the provisions of Table 3.6.1.

Diameter(mm)	20	25	32	40	50
Horizontal Maximum	300	350	400	500	600
Spacing(mm)					
Vertical Maximum	900	1000	1100	1300	1600
Spacing(mm)					

Table 3.6.1 the maximum spacing between plastic pipes and composite pipe supports

7) Pipelines connection between valves, and metal connectors should be of the compression type, sliding type, or sleeve type.

6. Water Pressure should comply with the following regulations:

1) The components of the water system shall be tested for their strength and tightness.

2) After the installation and connection of the water system pipeline, a hydraulic test should be conducted. The water temperature for the hydraulic test should be between 5 °C and 40 °C, the pressure accuracy is greater than 0.01Mpa. The test pressure is 1.5 times the working pressure and not less than 0.6MPa, Stabilize the pressure for 10 minutes without any decrease in pressure. After the pressure test is completed, reduce the system pressure to the working pressure, and the pressure should not decrease within 60 minutes, there shall be no leakage at each connection.

3) Reliable antifreeze measures should be taken during the water pressure test in winter. After the pressure test is completed, the water should be drained in a timely manner. If necessary, compressed air should be used to blow out the water stored at the low points of the water system.

7. The flushing test should comply with the following regulations:

1) When cleaning the water system, it must be separated from the host and cleaned separately to ensure that there are no impurities in the water system before connecting the water system to the host.

2) Flushing tests should be conducted on different loops of the water system one by one. After flushing, it should be ensured that the water and flushing fluid in the pipelines and equipment are completely drained. After cleaning, the filter should be promptly removed and cleaned.

8. During the installation process of all winter projects, it is strictly prohibited to inject water into the system until the unit has no normal antifreeze protection capacity to prevent freezing and damage to water pipelines and end equipment. The residual water in the pipeline and equipment during the hydrostatic test must be blown clean with compressed air. Water filling and antifreeze should be injected after the system flushing and pressure testing are completed, and the concentration of antifreeze should meet the antifreeze requirements. Antifreeze solution can be configured according to its concentration or density. During the preparation process, corresponding protective measures should be taken according to the requirements of the antifreeze product manual.

9. The system drain valve should be installed at the lowest point of the system return pipeline. In cold regions, it is advisable to consider the automatic drainage function. When the main engine is powered off, it can automatically empty the water in the system to prevent the system pipeline from freezing and cracking.

10. The system should be equipped with a water leakage protection device, which should have

active power outage protection and alarm functions. When there is water leakage in the system water pipeline, the water leakage protection device should automatically cut off the water supply and issue an alarm and drainage signal.

3.7 Water Pipe Insulation And Freeze Protection

1. Water Pipe Insulation And Freeze Protection shall comply with the following regulations:

1) The insulation layer material and thickness shall be executed according to the construction drawings.

2) When using non-closed hole material, the outer surface shall be provided with a protective layer.

3) Between pipes and supports, take measures to prevent "hot bridge" or "cold bridge" through the wall and floor.

4) If the drawing are not clear, the minimum insulation thickness of the pipeline and equipment can be selected according to Table 3.7.1.

Table 3.7.1 the minimum insulation thickness of the pipeline and equipment

heat-insulating material		F	lexible foam rub	ber
	nominal bore	≤DN20	DN25~DN40	≤DN50
	the minimum insulation thickness of the	25	28	32
Indoor	pipeline(mm)			
the minimum insulation thickness of the 45		45		
	equipment(mm)			

2. For insulation materials and their products, product quality inspection report and factory certificate shall be provided, and their specifications and performance shall meet the provisions of relevant technical standards and design documents.

3.8 Pressure Regulation, Anticorrosive And Wash

1. Pressure Regulation

System hydraulic test: after the system is installed, the hydraulic test should be carried out before the pipe insulation.

1) Before the test, the pipeline should be fixed, the joints need to be laid openly, and should not be connected to the water distribution apparatus;

2)The pressure gauge is installed in the lowest part of the test pipe section, and the pressure accuracy is 0.01Mpa;

3) From the lowest pipe section slowly to the pipeline water, fully exclude the air inside the pipeline, water tightness test;

4)Slowly pressurize the pipeline, pressurization is appropriate to use a hand pump, pressurization time is not less than 10Min;

5)Pressure test shall meet the following requirements:

(a) For steam and hot water heating system, the working pressure at the top plus 0.1MPa, and the test pressure at the top of the system shall not be less than 0.3MPa.

(b) For the high temperature hot water heating system, the test pressure shall add 0.4MPa to the peak working pressure of the system.

(c) Hot water heating system using plastic pipe and composite pipe; the hydraulic test shall be conducted with the system peak working pressure plus 0.2MPa, and the test pressure at the system apex shall be no less than 0.4MPa.

6)Method of calibration:

(a) The heating system using steel pipe and composite pipe shall have the pressure drop not more than 0.02MPa within 10min under the test pressure, and check after the heating pressure is reduced to the working pressure without seepage or leakage.

(b) The heating system using plastic pipe should have the pressure drop of no more than 0.05MPa within 1h under the test pressure, then reduce the pressure to 1.15 times of the working pressure, stabilize the pressure for 2h, the pressure drop should not be greater than 0.03MPa, and each connection should not leak or leak.

(c)Within 30 minutes, allow two times to make up the pressure, up to the specified test

pressure.

2. Anticorrosive

After the system passes the pressure test, remove the rust on the pipe surface, the pipe and its welding place and all the support and hanger are painted with red Dan antirust paint.

3. Wash

After the pressure test of the system, the system shall wash and clean the filter and decontamination device until the water is free of impurities such as sediment, iron chips and other impurities, and the water is not cloudy.

4 Electrical Connection

4.1 Wire Diagram

1.Model:HU-3K/6L

NO.	Description
XT2	Terminal
ΔΡ	Motherboard
	Wouldfoodd
XT1	Power Supply Terminal
KM1	Contactor
KM2	Contactor

2.Model:HU-9K/6L

1

NO.	Description		
XT2	Terminal		
AP	Motherboard		
XT1	Power Supply Terminal		
KM1	Contactor		
	Contactor		
	Contactor		
KM3	Contactor		

4.2 Motherboard Port Definition

1.Model:HU-3K/6L

Port	Description	Port	Description
OUT1	Hot Water Electric Heater	DI5	Reserve
OUT2	Water Pump	DI4	Reserve
OUT3	3-Way Valve (Off)	DI3	Reserve
OUT4	3-Way Valve (On)	DI2	Reserve
OUT5	Reserve	DI1	Reserve
OUT6	3KW Electric Heater	TH1	Reserve
OUT7	Total Electric Heater	TH2	Reserve
COM3	RS485	TH3	Reserve
COM2	RS485	TH4	Reserve
COM1	RS485	TH5	Reserve
AC-L	Power Input L	COM8	Reserve
AC-N	Power Input N	COM6	P_a Water Pump PWM Port
ECL	Motherboard Communicate Port	COM4	P_b Water Pump PWM Port

2.Model:HU-9K/6L

Port	Description	Port	Description
OUT1	Hot Water Electric Heater	DI5	Reserve
OUT2	Water Pump	DI4	Reserve
OUT3	3-Way Valve (Off)	DI3	Reserve
OUT4	3-Way Valve (On)	DI2	Reserve
OUT5	6KW Electric Heater	DI1	Reserve
OUT6	3KW Electric Heater	TH1	Reserve
OUT7	Total Electric Heater	TH2	Reserve
COM3	RS485	TH3	Reserve
COM2	RS485	TH4	Reserve
COM1	RS485	TH5	Reserve
AC-L	Power Input L	COM8	Reserve
AC-N	Power Input N	COM6	P_a Water Pump PWM Port
ECL	Motherboard Communicate Port	COM4	P_b Water Pump PWM Port

4.3 Electrical wiring

1. Special outdoor power supply line should be used, and the power supply voltage meets the rated voltage requirement.

2. The power supply line of the unit must have a grounding line, and the power supply ground line should be reliably connected with the external grounding line, and the external grounding is effective.

3. The user's incoming power supply must be installed with leakage protection device.

5. The power supply cable and signal cable should be neatly and reasonably arranged, not interfering with each other, not in contact with the connecting pipe and valve body and ensure that the minimum distancebetween the strong and weak power is more than 25MM.

6. he wire controller should be installed in the place where it is easy to observe the operation and should not be installed in the place where there is water and humidity.

7. The connection lines in the host have been installed in the factory, the user does not need to connect again, but only need to check whether the connection lines are connected properly, there is no damage or fall off.

8. After all wiring connections have been completed, check them again carefully before switching on the power.

	Power Supply Wires		
Model	Power Supply	Cable Diameter	Specification
HU-3K/6L	220-240V~/ 50Hz	3*2.5mm ²	AWG 14
HU-9K/6L	380V-415V/3N ~/ 50Hz	5*6mm ²	AWG 10

5 Wire Controller & Parameters Settings

5.1 Interface

1. On the electric display

As shown in the following figure, select the corresponding language option and click " 💙 "

to enter the system. If the language is not selected for more than 2min, it will automatically enter the system by the currently selected language and break the screen.

After entering the system, the following page is displayed. After 3S, the communication normally enters the normal page, and the communication failure keeps the display. Touch will be accompanied by the sound of the button, bright screen 2min no touch operation automatically extinguish the screen, click the screen to wake up.

2. Interface Display

3. Icon description

The interface is displayed from left to right respectively: time, day-month-year, week, defrosting, cascade, mute, water pump, return valve, electric heating, compressor, fan, WIFI;

Frost display: When the unit enters the frost mode, "^w" is always displayed and flashes when the refrigerant is recycled;

electric heater is close and the quick-heat function is enabled, it is flashing display 1Hz; when the electric heater is close and the sterilization function is enabled, it is flashing display 0.5Hz;

Compressor display: When the compressor is running, "**D**" is always displayed;

Fan display: When the fan is running, "Som" is always displayed;

WIFI display: When the unit links the WIFI successfully, "🛜" is always displayed;

Fault display: When unit fault exists, "W" is flashing display, click the icon to enter the

real-time fault / fault record; when the fault is eliminated, the icon will be extinguished; click the icon to enter the fault query page; it can display 20 real-time faults and 50 historical faults.

Mode / shutdown display: display the current operation mode, on the top of the left of the main interface; operation mode is not displayed during shutdown.

	Heating
*	Cooling
	Hot wate+Heating
	Hot water+Floor heating
	Hot water+Cooling

4. Temperature setting

Single mode (Heating, Cooling, Floor heating, Hot water)

(1) You can click "+" "-" adjust the set temperature of the current mode;

(2) The slide can also set the setting temperature for the current mode;

(3) Click the temperature value and set temperature, press"Enter" to determine the modification.

Combination mode (Hot water+Cooling, Hot wate+Heating, Hot water+Floor heating) Click the set temperature value and enter the set temperature and press"Enter" to determine the modification.

5.2 Mode Setting

1.Switch key

In bright screen state, click on key "O" to realize startup / shutdown operation; ON below the icon, and the upper left corner of the current mode; OFF, and the mode icon is extinguished.

2.Mode menu

In bright screen state, press" "" to enter the unit mode selection function page; click the corresponding mode with "Mode" or "Main" to return to the home page.

3.Function menu

1) User command operation

On the main screen, click "D" button to enter the function selection page; then click "Discr Functions > "enter user command operation from top to bottom are

silent mode, high temperature sterilization, forced defrosting, manual heat, system emptying; click the corresponding button to start / close the corresponding function.

2	User Functions	>	ં	Quiet mode	>
Ö	Timing Functions	>	\odot	Germicidal mode	>
(11-	WIFI Distribution	>	.•. 22:	Forced frosting	>
9	Return Water Function	>	,###1	Quick Heat Mode	>
30	Factory Functions	>	a	System emptying	>
X8	Scene Settings	>			

2) Switch machine timing control

In the bright screen state, click" Dutton to enter the function selection page; then click

"<u>Timing Functions</u>" to enter the switch timing viewing page; if you need to enable the weekly timing, click any button of week 1-Sunday to start the weekly timing; Click the time period to enter the time setting of this period, Enter the time through the keyboard, click the

enabling button "V" to start / close the period, and press "Enter" to save after setting.

< User F	Functions	Main 🔂	< Timing F	unctions		Main 🗗	< Timer Functions	Main 🗗
1	User Functions	>	Ö T	imer ON/OFF			Timer ON/OFF	
Ö	Timing Functions	>	1	Timer ON: Timer OFF:	05:30 06:30	✓	Timer ON : 05 : 30	
((:-	WIFI Distribution	>	1.	Timer ON:	05 : 30		$\frac{1}{1}$ Timer OFF : 06 : 30	
ø	Return Water Function	>		Timer OFF:	06:30			
	Factory Functions	>	3	Timer ON : Timer ON:	05 : 30 06 : 30	✓		
×8	Scene Settings	>					Enter	
			Repeat	Monday	Tuesday	Wednesday		
5			Thursday	Friday	Staurday	Sunday		

3) WIFI

In the bright screen state, click the "button to enter the function selection page, click "WIFI Distribution content the WIFI operation interface, click to enter the corresponding WIFi distribution network mode (intelligent distribution network mode is recommended), and the corresponding button is lit up (WIFI distribution network time is 3 min,

to:55 2022-01-20 SUN 20°C # .	a ← m () (User Functions User Functions Timing Functions WIFI Distribution Return Water Function Factory Functions Scene Settings 	Main	< WIFI WIFI distribution Intelligent Distribution Network 	Main 🖻
On bright screen, click" P Ret setting method is	, click " (, , , , , , , , , , , , , , , , , ,	button to enter the fun ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ction selection the bac	tion page; then kwater timing view	page, the
 User Functions Timing Functions Timing Functions WIFI Distribution Return Water Function Factory Functions Scene Settings 	> > > > >	Image: Timer Return Water 1 Timer ON :: 06:00 Timer OFF :: 08:00 2 Timer OFF :: 08:00 3 Timer OFF :: 18:00 3 Timer OFF :: 22:00		Timer Return Water Timer ON: 06 Timer OFF: 08 Enter	: 00 : 00
5) Factory function Unit assembly not function selection keyboard,press"H	on umber setting n page; click" Enter"enter th	: in the bright screen Factory Functions He factory function p	state, click	k" Push button , "type "1122" on Machine Tooling	to enter the the outgoing , _{rto}

timeout exit distribution network mode).

enter the unit assembly number setting interface, where you can see and modify the current unit assembly number.

• •	20 SUN ∦ 20℃ 🗄	*‱ ⊇0!	二	< User Functions	Main	
		T	¢	L: User Functions		>
	1 1		2	Ö Timing Functions		>
4	.5 ℃	4	45 °⊂	🔶 WIFI Distribution		>
Current	Temperature	Curre	nt Temperature	Return Water Function		>
Set Te	emperature	Set	Temperature	Factory Functions		>
	<u></u>			Scene Settings		>
ON	Mode 1	Function	Query Setting	5		
				C Factory Functions		
			4		Main	
7	Q	Q	Fsc	Machine Tooling	Main	► >
7	8	9	Esc	Machine Tooling Inverter Test	Main	>
7	8	9	Esc ←	Machine Tooling Inverter Test Refrigrant reclaiming	Main	> > >
7 4	8 5	9 6	Esc	Machine Tooling Inverter Test Refrigrant reclaiming	Main	>>>
7 4 1	8 5 2	9 6 3	Esc	Machine Tooling Machine Tooling Inverter Test Refrigrant reclaiming	Main	> > >
7 4 1	8 5 2	9 6 3	Esc ← Enter	Machine Tooling Inverter Test Refrigrant reclaiming Hold down for three seconds	Main	> > >

Service life password setting:

①Click on the function button under the main page;

(2) Click on the factory function and enter the password "8563";

③Entered the service life interface.

6) Scenario setting

On the bright screen state, click" To the function selection page;

but the state of the switch machine is not changed.

7) Double temperature area

In the bright screen state, click "D" to the function selection page; click "D" to turn the

page, click " Double temperature zone

> "to enter the temperature setting

interface of the double temperature zone.

< Double temperature zone	Main 🕁	 Viser Functions 	Main 🗗	 User Functions 	Main 🚽
📓 : OFF	€ :105 %				
1	2	L. User Functions	>	Double temperature zone	>
	25	Timing Functions	>		>
25 ℃	25 ℃	🔶 WIFI Distribution	>		>
Current Temperature	Current Temperature	Return Water Function	>		>
50 ℃ Set Temperature	40 ℃ Set Temperature	Hereit Factory Functions	>		>
Comment		Cene Settings	>	6. CAN	>
5		2 <	>	2 <	>

4 Query menu

1) Parameter query

Set the temperature, return difference, backwater temperature, antivirus in the bright screen

{₽_₹ User Parameters > "to enter the query page, click " again state, Click"

to enter the user parameter list, and the modification method refers to the factory parameter setting.

88	User Parameters	>	Heating Set Temperature	50 °
•	Contant Descentation		Cooling Set Temperature	12 %
20	System Parameters		Floor Heating Set Temperature	40 s
\bigcirc	Notification Information	>	Hot Water Set Temperature	28 %
C	Power Statistics	>	Air conditioning return difference value	e 54
r?	Temperature Curves	>	Floor Heating Return Difference Value	5 9
N	Set Temperature Cupier	~	Hot Water Return Difference Value	5 9
22	Temperature Curves Set Temperature Curves	>	Hot Water Return Difference Value	

2) Operational factor

running, click"

"to enter the query page, Click In the bright screen state, click"

" to enter the unit number and click the

corresponding online unit number to enter the temperature status query of the corresponding unit .Gray unit representative is not online .Operating parameters are detailed in the attached table.

< Query	Main 😁	C System Parameters	Main 🕞	< System Parameters	Main 🕁
		No.01	No.09	01 Compressor operating framency	A U-
}? User Parameters	>	No.02	No.10	02 Fan running frequency	0 Hz
System Parameters	>	No.03	No.11	03 Electronic expansion valve steps	250 P
Notification Information	>	No.04	No.12	04 EVI valve steps	0 P
Power Statistics	>	No.05	No.13	05 AC input voltage	0 V
Temperature Curves	>	No.06	No.14	06 AC input current	0 A
Set Temperature Curr	∕es >	No.07	No.15	07 Compressor phase current	0 A
HU		No.08	No.16	08 Compressor IPM temperature	- 55 °C
5		5		5 <	>
	< Query ₩ User Parame	Main e	< Notification Info Fault Information	ormation Main 😁	
	System Parar	neters >	Fault Record	Clear	
		nformation	00E03 Water flow	v switch fault	
	Power Statis	ies >			
	Contraction Temperatu	re Curves >			
	Set Temper	rature Curves >	Gall		
			COLUMN AND A		
	2		2		
in the bri	ght screen	state ,	click"	"to enter the	e que
page,click"	ONOTIFICATION INFORM	nation	> "and" Fat	Ilt Record "to view	historic
failures, Click" ^F	ault Information	"to query the cur	rrent fault, click	Clear "	to clear th
historical faults.					
Failure represent	s significance	:			
00E03	: 00 Represer	ts"Main engine".	, 01.02.03	Represents"Slave"	
00E03	: E03 Repres	ents"Fault code"		1	
4) Power modu	le parameter o	uery (optional)			
	- parameter q	(optional)			444
When the machin	ne is equipped	with a power mo	dule, in the br	ight screen state, clic	k" 💽 "
enter the query n	age click "	Power Statistics		> "to enter the	e unit

enter the query page, click "**Construction** query, query the total power consumption, current power, voltage and current parameters.

<i>\$</i> ₽ <u></u> ₽	User Parameters	>	1/15	201	kw h	131.0 Total power consumption	4 kv proftheunit
۰.	System Parameters	>	Total power consur	notion of the unit	STR.	Today power consumption of	f the unit 131.04 kv
\bigcirc	Notification Information	>	Today power consumption	of the unit 148.2	4 kw.h	Unit input power Input voltage A	20,2 V 231,0 V
©	Power Statistics	>	Input voltage A	232.	3 V	Input voltage B	231.2 \ 230.6 \
Ľ6	Temperature Curves	>	Input current A	3.23	1 A	Input current A	0.251
t%	Set Temperature Curves	>	Unit input power	705.9	∍w	Input current C	0.275

- (Single-phase charge volume module) (Three-phase electric power module)

>

5) Curve query

In the bright screen state, click "B", to enter the query page and

click"	Ľ6	Temperature Curves	>
click"			

"to enter the curve query, you can record the curve of inlet water, outlet water, compressor frequency and ambient temperature within 24 hours.

			4.0.5				
< Que	ry Main		< Temperature	2 Curves		Main	19
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	User Parameters	> ℃	Iniet :	Cutlet :	Ambient :	Compressor :	Hz
\$₀	System Parameters	> 80.0					1209x
9	Notification Information	> 4010					blitte
O	Power Statistics	> 2000					bitts:
	Temperature Curves	>					206te
L.	Set Temperature Curves	> -40°C	Qh 1h	2h	3h	4h 5h	- Utix
			-		,		-
9			<u> </u>			/	
6) Temperature curve sett	ting						
In the bright screen state,	click "E "to enter	the quer	y page	and			
click"	rature Curves	>	"to er	nter the	e curv	e settin	g, C
				_			0

CL8 < "Solve to switch curve settings for different modes; click " to select the different curve controls, and the specific parameters of the current curve are

displayed in the curve area.



#### 5 Set the menu

16:55 2022-01-20 SUN ∦ 20℃ 🔆	a 🕑 O 🛛 🗕 🕂 🛲 🎒 %	\$ ? <	Settin	gs	Main	
			Ð	Date & Time		>
1	<b>5</b> °C		¢	Display		>
Current T	emperature	1	X.	Temperature Display(°C/°F)		>
5				Factory Parameters		>
5	• +		Э	Restore Factory Settings		>
Set Ten	nperature	90	•	About		>
ON Mode Fur	a (iii) Query Sett	<b>\$</b> tting	5			

1) Clock Settings

2	Date & Time	>	
٤	Display	>	
8	Temperature Display(°C/°F)	>	2022 - 03 - 21
410	Factory Parameters	>	18 : 22
)	Restore Factory Settings	>	
2	About	>	Enter

In the bright screen state, click "** "to enter the Settings page and click



sliding bar can set different brightness; click ">" < " to switch to different languages, including Chinese, English, and Polish.



When the network is running, click

0	Factory Parameters	> "to ent	-r
			-1

the unit number, select and click the corresponding online unit number to enter the parameter setting of the corresponding unit . Gray unit representative is not online .

Settin	ngs	Main		< Factory Parameters	Main 🚽
Ē	Date & Time	>	>	P00 External ambient temperature sent	sor 0
Ø	Display	>	>	P01 High voltage switch setting	0
~~ 				P02 Low pressure switch setting	1
-0	Temperature Display(°C/°F)	>	<u> </u>	P03 Water flow switch setting	0
Pl-	Factory Parameters	>	>	P04 Water flow switch setting	1
Э	Restore Factory Settings	>	>	P05 Water flow switch setting	1
0	About	, ,		P06 Water flow switch setting	1
Q	AUUUI	-		P07 Water flow switch setting	0
5				5 <	>

click" **>**"" ****" to turn the page for the values of each parameter, click on the parameters to be

modified to go to the modified parameters page, on this page, the parameter number, the current parameter value, setting value, and setting range are displayed, click the parameter value in the pop keyboard input set value press "Enter", save the parameters on the following page. On this

page click" > "" < "to Switch over the next parameter.

	K Factory Parameter	ers	Main 🕞
	P11 High vo	ltage protection value	
	Current V	alue	50°C
	Set Value		50°C
	Set Range	Enter	30 ~ 50
4) Factory reset			
In the bright screen state,	click " "to ent	ter the settings p	bage, and
click" Restore Factory	Settings	> "to enter	the Recove
page, click" ,fac	tory Settings can b	be restored.	
< Settings	Main	< Restore Factory	Settings
Date &	Time >		
🗘 Display	>		
-C Temper	ature Display(°C/°F)		?
Factory	Parameters >		store Factory Settings
S Restore	Factory Settings		
About	>	S	
5) The program version is	s viewed		
In the bright screen state,	click "*","to ent	ter the settings p	bage, and
click" () About	> ,,	to view the prog	gram version
screen and the motherboar	d.		, <b>-</b>



### 5.3 Other Setting

1.Unit cascade hardware wiring and dialing settings

1) The COM1 communication port between the main board of the host and the slave, using the connecting cable A and A, B and B connected.



2) Dial switch to the corresponding equipment address

00 Represents"Main engine", 01.02.03...... Represents"Slave"

Address	1	2	3	4
0	Х	Х	Х	X
1	~			
2		~		
3	~	$\checkmark$		
4			~	
5	~		$\checkmark$	
6		$\checkmark$	~	
7	~	$\checkmark$	~	
8				$\checkmark$
9	~			$\checkmark$
10		$\checkmark$		$\checkmark$
11	~	$\checkmark$		$\checkmark$
12			~	~
13	~		~	$\checkmark$
14		$\checkmark$	~	$\checkmark$
15	~	~	~	$\checkmark$

3) The unit needs to be repowered on.

Run status parameter table:

Error	Interpretation	Indication
Code		Range
1	Compressor operating frequency	0~150Hz
2	Fan running frequency/speed	0~999Hz
3	Electronic expansion valve steps	0~480P
4	EVI valve steps	0~480P
5	AC input voltage	$0{\sim}500V$
6	AC input current	0~50.0A
7	Compressor phase current	0~50.0A
8	Compressor IPM temperature A, C input current	-40~140°C
9	High pressure saturation temperature	-50~200°C
10	Low pressure saturation temperature	-50~200°C
11	External ambient temperature	-40~140°C
12	Outer coil temperature	-40~140°C
13	Inner coil temperature	-40~140°C
14	Return air temperature	-40~140°C
15	Exhaust temperature	0∼150°C
16	Return water temperature	-40~140°C
17	Discharge temperature	-40~140°C

3

18	Economizer inlet pipe temperature	-40~140°C
19	Economizer outlet pipe temperature	-40~140°C
20	Unit Tooling Number	0~120
21	Water tank temperature	-40~140°C
22	Fluorine circuit plate heat exchange out temperature	-40~140°C
23	Driver manufacturer	0~10
24	Water pump speed PWM	0~100%
25	Water flow rate	0~100L/min
26	User return water temperature	-40~140°C
51	Hot Water heat source temperature	-40~140°C
52	Heating heat source temperature	-40~140°C
53	Heating water tank temperature	-40~140°C
54	All outlet water temperature	-40~140°C

Factory setting parameters table:

NO	Interpretation	Range
P00	External ambient temperature sensor	0~1
P01	High voltage switch setting	0~1
P02	Low pressure switch setting	0~1
P03	Water flow switch setting	0~1
P04	Thermal overload protection switch setting	0~1
P05	Linkage switch setting	0~2
P06	Fan type setting	0~1
P07	High voltage protection lockout setting	0~1
P08	Low pressure protection lockout setting	0~1
P09	Exhaust protection lockout setting	0~1
P10	Water flow switch protection lockout setting	0~1
P11	High voltage protection value	40~70
P12	High-voltage frequency limit value	40~70
P13	Low-voltage protection value	-50~-10
P14	Low voltage frequency limit value	-50~-10
P15	Exhaust temperature protection value	100~120
P16	Exhaust temperature frequency limit value	90~120
P17	Cooling fan speed up value	0~60
P18	Cooling fan speed down value	0~60
P19	Heating fan speed down value	0~60
P20	Heating fan speed up value	0~60

P21	Unit forbidden to start low temperature value	-40~-10
P22	Electric heating start ambient temperature	-15~40
P23	Inlet and outlet water temperature difference excessive value	10~30
P24	Return water temperature compensation value	-10~10°C
P25	Outlet water temperature compensation value	-10~10°C
P26	Air conditioning return difference value	0~10°C
P27	Floor heating return difference value	0~10°C
P28	Pump control when reaching temperature shutdown	0~1
P29	Anti-freeze pump running time (every 10min)	0~10min
P30	Defrost mode selection	0~2
P31	Enter defrost cumulative run time threshold	0~120
P32	Enter defrost coil temperature value	-30~0
P33	Enter defrost temperature difference 1	0~20
P34	Enter defrost temperature difference 2	0~20
P35	Maximum defrost time	0~30
P36	Exit defrost coil temperature	0~30
P37	Temperature stop mode	0~2
P38	Heating main valve initial opening constant	-999~999
P39	Pressure sensor setting	0~1
P40	Refrigeration target superheat correction value	-5~10
P41	Heating high pressure protection and frequency limit correction value	-10~10
P42	Heating target superheat correction value	-5~10
P43	Medium pressure switch setting	0/1
P44	Water flow switch failure detection setting	0/1
P45	Communication address code	1~16
P46	Return difference of liquid injection solenoid valve opening	0~15
P47	EVI target superheat constant	0~12
P48	Tank temperature probe enabled or not	0~1
P49	Hot water frequency running percentage	30%~100%
P50	Refrigeration target frequency constants	-100~100
P51	Refrigeration minimum frequency limit	15-60Hz
P52	Refrigeration target frequency upper limit	40-120Hz
P53	Refrigeration target frequency lower limit	15Hz-P52
P54	Heating target frequency constant	-100~100
P55	Heating target frequency upper limit	50-120Hz
P56	Heating target frequency lower limit	20Hz-P55

P57	Heating minimum frequency1	15-60Hz
P58	Heating minimum frequency2	15-60Hz
P59	Heating minimum frequency3	15-60Hz
P60	Hot water target frequency constants	-100~100
P61	Hot water target frequency upper limit	50-120Hz
P62	Hot water target frequency lower limit	15Hz-P61
P63	Hot water minimum frequency 1	15-60Hz
P64	Hot water minimum frequency 2	15-60Hz
P65	Hot water minimum frequency 3	15-60Hz
P66	DC fan initial frequency	20-60Hz
P67	DC fan machine heating minimum frequency	20-60Hz
P68	DC blower heating max frequency	20-60Hz
P69	DC fan cooling minimum frequency	20-60Hz
P70	DC fan cooling maximum frequency	20-60Hz
P71	Turn on enthalpy control frequency	20-80Hz
P72	Stop enthalpy frequency	20-80Hz
P73	Refrigeration main valve initial opening 1	20~480
P74	Refrigeration main valve initial opening 2	20~480
P75	Refrigeration main valve initial opening 3	20~480
P76	Refrigeration main valve minimum opening	0~300
P77	Heating main valve minimum opening	0~300
P78	Main valve maximum opening	100~500
P79	Main valve initial opening constant c	50~300
P80	Main valve initial opening coefficient a	-999~999
P81	Main valve initial opening coefficient b	-999~999
P82	Max. opening of auxiliary valve	100~500
P83	Minimum opening of auxiliary valve	50~300
P84	Main valve adjustment period	10-120
P85	Initial opening constant of auxiliary valve c	-200~900
P86	Initial opening coefficient of auxiliary valve a	-999~999
P87	Initial opening coefficient of auxiliary valve b	-999~999
P88	Quiet mode compressor frequency	20-70Hz
P89	Quiet mode fan frequency	20-60Hz
P90	Enthalpy increase into the ambient temperature	0-45
P91	Prohibition of enthalpy entry time	0-30
P92	Enthalpy entry temperature difference	0-60
P93	Enthalpy entering press continuous operation time	0-20

P94	Auxiliary valve adjustment cycle	10-120
P95	Group network pump operation mode	0-1
P96	Hot water return difference value (host)	0~10°C
P97	Water tank temperature automatic compensation (host)	0~1
P98	Water tank temperature manual compensation value (host)	-10~10°C
P99	Water pump speed regulation temperature difference	2~10°C
P100	PWM pump minimum speed	20~80%
P101	Water pump control mode (host)	0~1
P102	Four-way valve control mode	0~1
P103	Mode switching minimum running time	0~10min
P104	Operating frequency percentage at mode switching	20-100%
P105	Cooling mode running loop temperature limit (main unit)	10~60°C
P106	Heating mode running ring temperature limit (host)	10~60°C
P107	Hot water mode operation ring temperature limit value (host)	10~60°C
P108	Hot water set temperature upper limit value (host)	30~80°C
P109	Hot water set temperature lower limit value (main unit)	10~30°C
P110	Heating setting temperature upper limit (main unit)	30~60°C
P111	Heating setting temperature lower limit (main unit)	15~30°C
P112	Refrigeration setting temperature upper limit (main unit)	20~40°C
P113	Refrigeration setting temperature lower limit value (main unit)	5~20°C
P114	Number of pressesors to choose	1~2°C
P115	Machine type selection (main machine)	0~5
P116	Unit temperature control mode (host)	0~1
P117	Anti-freeze entry ring temperature	0∼10°C
P118	Anti-freeze entry outlet water temperature	0∼20°C
P119	Refrigerant type	0~20
P120	Low temperature start limit	0~1
P121	Heating frequency shield 1 section low value	
P122	Heating frequency shield 1 high	
P123	Heating frequency shield 2 low	
P124	Heating frequency shield 2 high	
P125	Heating frequency shield 3 low	0.120
P126	Heating frequency shield 3 segment high value	0-120
P127	Refrigeration frequency shield 1 segment low value	
P128	Refrigeration frequency shield 1 segment high value	
P129	Refrigeration frequency shield 2 low	
P130	Refrigeration frequency shielding 2-segment high value	

P131	Refrigeration frequency shield 3-segment low value	
P132	Refrigeration frequency shield 3-segment high value	
P133	Fan module	0~1
P134	Water flow rate too low protection value	0~100
P135	Anti-condensation start temperature difference	0~50
P136	Throttle bypass valve opening loop temperature	-20~50
P137	Throttle bypass valve delay press	0~999
P138	Defrosting press frequency	40~120
P139	Air conditioning electric heating options	0/1
P140	Hot water electric heating options	0/1
P141	Frost dew point duration	
P142	Frosting dew point constant	0~60
P143	Frost accessible water temperature	
P144	Frost-accessible ring temperature	-20~30
P145	Frost protection value of water outlet	-30~10
P146	Water pump range setting value	0~100
P147	Refrigeration anti-freeze mode	2000/1/2
P148	Refrigeration anti-freeze temperature value	-40
P149	Water out of the high limit frequency value	40-80
P150	Secondary heating pump selection	2
P151	Hot water heat source return difference	0
P152	Heating heat source return difference	0
P153	Combined hot water heat source upper temperature limit	70
P154	Combined heating heat source upper temperature limit	60
P155	Commressor code	0
P156	Auxiliary electronic expansion value selection	0
P157	Auxiliary electronic expansion value to redyce the temperature difference	0
P158	Heating limit water temperature, start the ambient temperature	-15
P159	Limit temperature constant	68
P160	Limit temperature coefficient	14
P161	Auxiliary pump selection	0
P162	Anti-freezing interval for hot water pipes	90
P163	Minimum feedback of pump speed regulation	30
P164	Level control	3
P165	Load return difference	3
P166	Lightening back to the poor	2

P167	Stop back to the poor	3	Fau
P168	Hot water mode start ratio	50	lt
P169	Non-hot water mode start ratio	100	coc
P170	Loading cycle	7	c she
P171	Shield low voltage switch ring temperature	-30	et:

E01	Wrong phase fault		
E02	Out of phase fault		
E03	Water flow switch fault		
E04	Main board and 4G module communication fault		
E05	High pressure switch protection		
E06	Low pressure switch protection		
E09	Line controller and motherboard communication failure		
E11	Time limit protection		
E12	Exhaust gas temperature too high fault		
E14	Hot water tank temperature failure		
E15	Water inlet temperature sensor failure		
E16	Coil sensor failure		
E18	Exhaust gas sensor failure		
E21	Environmental sensor failure		
E22	User return water sensor failure		
E23	Cooling subcooling protection		
E24	Plate heat exchanger out temperature fault		
E26	Plate heat exchanger for anti-freeze sensor failure		
E27	Out of the water sensor failure		
E29	Return gas sensor failure		
E33	High pressure sensor failure		
E34	Low pressure sensor failure		
E37	Inlet and outlet water temperature difference is too large protection		
E38	DC fan 1 failure		
E39	DC fan 2 failure		
E42	Cooling Coil Sensor 1 failure		
E47	Economizer inlet sensor failure		
E49	Economizer outlet sensor failure		
E51	High pressure over high protection		
E52	Low pressure over low protection		

E55	Expansion board communication failure		
E80	Power supply error		
E94	Water pump feedback failure		
E96	Press 1 driver and main control board communication abnormal		
E98	Fan 1 driver and main control board communication abnormal		
E99	Fan 2 driver and main control board communication abnormal		
EA0	Plate heat exchanger temperature failure		
EA1	Network model error		
EA2	Hot water heat source sensor failure		
EA3	Heating heat source sensor failure		
EA4	Heating water tank sensor failure		
EA5	Total out of the water sensor failure		

E88/E89	P1	IPM overcurrent/IPM module protection
	P2	Compressor drive failure
	P3	Bit0:Compressor overcurrent alarm
	P4	Input voltage out of phase
	P5	IPM current sampling failure
	P6	Power component overheating shutdown.
	P7	Pre-charge failure
	P8	DC bus over-voltage
	P9	DC bus undervoltage
	P10	AC input undervoltage
	P11	AC input overcurrent
	P12	Input voltage sampling fault
	P13	DSP and PFC communication fault
	P14	Heat sink temperature sensor failure
	P15	Communication failure between DSP and communication board
	P16	Abnormal communication with main control board
	P17	Compressor over current alarm
	P18	Compressor weak magnetic protection alarm
	P19	PIM overheat alarm
	P20	PFC overheat alarm
	P21	AC input overcurrent alarm
	P22	EEPROM failure alarm
	P24	EEPROM refresh completed
	P25	Temperature sensing fault frequency limit.

P26	AC undervoltage frequency limit protection alarm
P33	IPM module overheating shutdown
P34	Compressor out of phase
P35	Compressor overload
P36	Input current sampling fault
P37	PIM supply voltage failure
P38	Precharge circuit voltage failure
P39	EEPROM fault
P40	AC input overvoltage fault
P41	Microelectronics fault
P42	Compressor type code fault
P43	Current sampling signal overcurrent

## **6** Initial operation and settings

### 6.1 Attention

1. Do adjustment after electrical safety inspection.

2. After the power is switched on, start the test running of heat pump, to see if it can function well.

3. Forced operation is forbidden, because it is very dangerous to work without protector.

### 6.2 Preparation Before Adjustment

- 1. Check that the system is installed correctly.
- 2. Pipes and cables are connected correctly.
- 3. Check that accessories are installed.
- 4. Make sure the drainage is working properly.
- 5. Make sure the system piping and connections are properly insulated.
- 6. Check that ground/earth connection had been made correctly.
- 7. Check that supply voltage can meet the requirement of rated voltage.
- 8. Check that the electrical leakage protector works correctly.

### **6.3 Adjustment Process**

- 1. Check that switch of display controller works properly.
- 2. Check that function keys on display controller work properly.
- 3. Check that indicator lights work properly.
- 4. Check that drainage works properly.
- 5. Check that system works correctly after starting up.
- 6. Check that water outlet temperature is acceptable.
- 7. Check if there are vibrations or abnormal sounds when the system is functioning.

## **7 Operation and Maintenance**

### 7.1 Operation

1. Conduct regular maintenance according to the user manual instruction, to make sure the unit running is in good condition.

2. If there is a fire, disconnect the power immediately and put the fire out with fire extinguisher.

3. The unit's operating environment should be free of gasoline, ethyl alcohol and other flammable materials to avoid explosions or fire.

4. if any malfunction occurs, find the reason, fix it and then reboot he unit. Never reboot the unit forcibly if the cause of the malfunction has not been eliminated. If there is refrigerant leakage or frozen liquid leakage, switch the unit off. If it is not possible to turn the unit off from the controller then disconnect the main power supply.

5. Never short connect the wire for device protection otherwise, in case unit malfunction, the unit will not be protected normally and could be damaged.

### 7.2 Maintenance

The heat pump should be installed and operated by qualified professionals. To ensure the continued correct functioning of the system it is recommended that it should be checked and maintenance should be carried out at regular. During maintenance, please pay attention to the points below:

1. Check that all parameters are normal during system operation.

2. Check for loose electrical connections and fix if necessary.

3. Check electrical components and replace if necessary.

4. After restarting the unit following a long period of inactivity, please do the following: examine and clean the equipment carefully, clean the water pipe system, check the water pump and fasten all the wire connections.

5. During leak detection and air tightness experiment, never allow oxygen, ethane or other harmful flammable gases to enter the system: only compressed air, fluoride or refrigerant can be used for such a test.